Step of Proof: assert_of_bor
9,38
postcript
pdf
Inference at
*
1
I
of proof for Lemma
assert
of
bor
:
1.
p
:
2.
q
:
(
(
p
q
))
((
p
)
(
q
))
latex
by ((((OnHyps [2;1] BoolInd)
CollapseTHEN (Rewrite
C
(UnfoldC `bor`
C(Un
ORTHENC HigherC ifthenelse_evalC
C(
ORTHENC HigherC assert_evalC)
C
0))
)
CollapseTHEN (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1. True
C1:
True
True
C
2
:
C2:
1. True
C2:
False
True
C
3
:
C3:
1. True
C3:
True
False
C
4
:
C4:
1. False
False
C4:
False
C
.
Definitions
ff
,
,
P
Q
,
P
Q
,
P
Q
,
True
,
if
b
then
t
else
f
fi
,
tt
,
t
T
,
P
Q
,
p
q
,
b
,
P
Q
,
False
,
Unit
,
,
Lemmas
false
wf
,
true
wf
origin